28 February 2016

Digital manufacturing

In conventional manufacturing, parts are produced by humans using power-driven machine tools, such as saws, lathes, milling machines, and drill presses, to physically remove material to obtain the shape desired.

In digital manufacturing, parts are produced by melting successive layers of materials based on 3D models — adding materials rather than subtracting them. The “3D printers” that produce these use powered metal, droplets of plastic, and other materials — much like the toner cartridges that go into laser printers.

3D printers can already create physical mechanical devices, medical implants, jewelry, and even clothing. But these are slow, messy, and cumbersome — much like the first generations of inkjet printers were.

In the early 2020s we will have elegant low-priced printers for our homes that can print toys and household goods. Businesses will use 3D printers to do small-scale production of previously labor-intensive crafts and goods.

Late in the next decade, we will be 3D-printing buildings and electronics. These will eventually be as fast as today’s laser printers are. And don’t be surprised if by 2030, the industrial robots go on strike, waving placards saying “stop the 3D printers: they are taking our jobs away.”

The geopolitical implications of these changes are exciting and worrisome. America will reinvent itself just as does every 30-40 years; it is, after all, leading the technology boom. And as we are already witnessing, Russia and China will stir up regional unrest to distract their restive populations; oil producers such as Venezuela will go bankrupt; the Middle East will become a cauldron of instability. Countries that have invested in educating their populations, built strong consumer economies, and have democratic institutions that can deal with social change will benefit — because their people will have had their basic needs met and can figure out how to take advantage of the advances in technology....

Source: Google news.